BSM2: Next Generation Boundary-Scan Master

Frank P. Higgins,
Rajagopalan Srinivasan

VLSI Test Symposium 2000
Boundary-Scan Master

- The **boundary-scan master** chip used for a parallel-serial interface between a service processor and boards.
What’s the Problem?

- Improved the performance and capability compared with original BSM.
- Incorporated new operational modes and feature
- Provide higher-level user interface
Introduction

- BSM2 is a new ASIC device
- Can be used in TAP-based DSP application areas

<table>
<thead>
<tr>
<th>Category</th>
<th>Device 497AE</th>
<th>Device 1215E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Modes</td>
<td>1. 497AA Compatibility Mode</td>
<td>Advanced Operational Mode</td>
</tr>
<tr>
<td></td>
<td>2. Advanced Operational Mode</td>
<td></td>
</tr>
<tr>
<td>Host Interface</td>
<td>1. Old 8-bit synchronous interface</td>
<td>New 16-bit asynchronous interface</td>
</tr>
<tr>
<td></td>
<td>2. New 8-bit asynchronous interface</td>
<td></td>
</tr>
<tr>
<td>Register Access</td>
<td>Indirect Addressing Method</td>
<td>Direct Addressing Method</td>
</tr>
<tr>
<td>Voltage & Frequency</td>
<td>3.3 V supply & 65 MHz Clock</td>
<td>3.3V supply & 65 MHz Clock</td>
</tr>
<tr>
<td>Technology</td>
<td>Lucent 0.35 μ CMOS process</td>
<td>Lucent 0.35 μ CMOS process</td>
</tr>
<tr>
<td>Package</td>
<td>28-pin SOJ package</td>
<td>48-pin TQFP package</td>
</tr>
</tbody>
</table>
Operation
(briefly introduction)

- Operate in two modes
 - An old mode: compatibility mode
 - A new mode: advanced operational mode
BSM2: Architecture
Host Interface

- Parallel / Serial converter
- Provides generic control functions
 - Chip enable
 - Read/write control
 - Data available/valid
 - Interrupt signals
BSM2: Architecture
Device Controller

- Provides high-level coordination and synchronization
- Controls the registers and memories states
 - Execute, jump, reset
- TCK signal
 - Auto-pause mode: free running
 - Gated-TCK mode: TCK is disabled until the execution is enable
BSM2: Architecture
TVI / TVO Memories

- Consists of 8K bits organized as 512 16-bit words
- During normal mode
 - Behave as FIFOs
 - Scan length: depends on internal scan counter
- During ATPG mode
 - Each memory location can be addressed individually for read and write operations
 - Scan lengths: 8K
TCK Generator and Gating

- The TCK generator can be programmed to divide the input master clock by 2^n, $n \in \mathbb{N}, 0 \leq n \leq 7$

- In gated-TCK mode
 - TCK running: when scanning or state change
 - TCK gated off: TAP state machine reaches the destination state or memory overflow/underflow
BSM2: Architecture
TMS Generator

- In the normal mode, TMS generated based on (automatic TMS generator)
 - The current state
 - The desired state
 - The desired idle operation
 - The destination state

- Overflow/underflow -> shift-IR/DR state
BSM2: Architecture
ATPG and SAR

- ATPG and SA registers are used to test
 - Interconnect test between UUT devices
 » Walking one/zero sequence
 - Cluster test of non-B-S devices and Internal logic of UUT devices
 » Pseudo-random sequence

| 1 0 0 0 |
| 0 1 0 0 |
| 0 1 0 0 |
| 0 0 1 0 |
| 0 0 0 1 |

Walking one sequence
Hardware and Software Co-Verification

- An existing software suite and BSM hardware design
- H/W and S/W co-simulation tool to integrate the RTL code of the BSM2 device with a virtual s/w processor
BSM Applications

- Digital Signal Processing application

- System-on-Chip designs
 - TAP can be controlled by the BSM2 to deliver the protocols to provide access to the internal cores
Conclusion

- Provides a more flexible architecture and higher level user interface for board/system designers.
- Widely used for boundary-scan applications.